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Thermoconvective instabilities in a porous medium 
bounded by two concentric horizontal cylinders 
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Route des Gardes, 92190 Meudon, France 

(Received 7 October 1975) 

The study of natural convection in a saturated porous medium bounded by two 
concentric, horizontal, isothermal cylinders reveals different types of evolution 
according to the experimental conditions and the geometrical configuration of 
the model. At small Rayleigh numbers the state of the system corresponds to a 
regime of pseudo-conduction. The isotherms are coaxial with the cylinders. At 
larger Rayleigh numbers a regime of steady two-dimensional convection sets in 
between the two cylinders. Finally, for Rayleigh numbers above the critical 
Rayleigh number Ra: the phenomena become three-dimensional and fluctuating. 
The appearance of these different regimes depends, moreover, on the geometry 
considered and, in particular, on two numbers: R, the ratio of the radii of the 
cylinders, and A ,  the ratio of the length of the cylinders to the radius of the inner 
one. In  order to approach these experimental observations and to obtain realistic 
theoretical models, several methods of solving the equations have been used. 

The perturbation method yields information about the thermal field and the 
heat transfer between the cylinders under conditions close to the equilibrium 
state. 

A numerical two-dimensional model enables us to extend the range of investi- 
gation and to represent properly the phenomena when steady convection appreci- 
ably modifies the temperature distribution and the velocities within the porous 
layer. 

Neither of these models allows account to be taken of the instabilities observed 
experimentally above a critical Rayleigh number RaF. For this reason, a study of 
stability has been carried out using a Galerkin method based on equations 
corresponding to an initial state of steady convection. The results obtained show 
the importance of three-dimensional effects for the onset of fluctuating con- 
vection. The critical transition Rayleigh number RUT is thus determined in 
terms of the ratio of the radii R by solving an eigenvalue problem. 

A numerical three-dimensional model based on the method of finite elements 
has thus been developed in order to point out the different types of evolution 
with time. Steady two-dimensional convection and fluctuating three-dimensional 
convection have been actually found by calculation. The solution of the system 
of equations by the method of finite elements is briefly described. 

The experimental and theoretical results are then compared and a general 
physical interpretation is given. 
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1. Introduction 
Numerous experimenters and theoreticians have studied the problem of plane 

porous layers and pointed out two regimes of convection, one being steady, the 
other fluctuating (Combarnous & Bories 1975). Furthermore, a significant 
number of numerical and theoretical models have been developed on this topic. 
On the other hand, there are very few studies available on natural convection 
in a porous medium bounded by two cylinders. A numerical study by the author 
(1972) is also restricted to a diagram, Nu* = f(Ra*, R) ,  but the similarity between 
the phenomena observed in a porous layer and in a fluid layer leads us to expect 
qualitative similarities to several publications. 

Mack & Bishop (1968) have solved the equations defining the steady two- 
dimensional regime in an annular fluid layer by the perturbation method. These 
authors expanded the temperature and stream function in power series in Ra*, 
considering terms up to the third. Their results are significant for not very large 
Rayleigh numbers and allow secondary flows to appear in the upper and lower 
part of the annular layer a t  very small Prandtl numbers. Perturbation analysis 
has also been used by Rotem ( 1971 ) in the case of surfaces which are not perfectly 
conducting. 

Early numerical calculations concerning the geometry studied have been 
carried out by Crawford & Lemlich (1963), who used the method of finite dif- 
ferences to solve the equations of continuity, energy and momentum. The range 
of investigation is restricted to three different values of the ratio of the radii a t  
the Prandtl number 0-714. The numerical study by Abbott (1964) is restricted to 
small radius ratios and yields nothing new compared with the previous study. 
The numerical two-dimensional model of Powe, Carley & Carruth (1971) shows 
the existence of secondary effects, such as vortices rotating in the direction 
opposite to the main stream. The study of stability developed below will show 
conclusively that it is impossible to obtain these effects with a two-dimensional 
model. Several experimental studies have been carried out in order to get quanti- 
tative information about the total heat transfer. The results give in general a 
correlation between the Nusselt number Nu, the Rayleigh number Ra,  the 
Prandtl number Pr and the ratio of the radii R (Liu, Mueller & Landis 1961; 
Lis 1966). The photographs by Bishop & Carley (1966) show the existence of an 
oscillatory regime. The period and amplitude of these oscillations are given as a 
function of the temperature gradient imposed between the cylinders. 

However, the most significant results on convection in an annular fluid layer 
have been obtained by Grigull & Rauf (1966). Using a Mach-Zehnder inter- 
ferometer for their visualizations, the authors point out different regimes of 
convection, in particular three-dimensional effects, which are very marked in the 
upper part of the experimental cell as the Grashof number increases. Further- 
more, the local Nusselt number at the surface of the cylinders is calculated from 
interferograms and a relation Nu* = f(Gr, 6/d i )  is given (6 is the difference in the 
radii and d the inner diameter). 

Detailed qualitative information is given by Bishop, Carley & Powe (1968) 
for a regime of oscillating three-dimensional convection, based on observstions 
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made on an annular space filled with air. Visualization was achieved with the help 
of tobacco smoke. The amplitude and wavelength of these oscillations are given 
as a function of the Grashof number. For relatively small ratios of the radii 
( R  = 1-15), Liu et al. (1961) find a regime of multicellular convection, the origin 
of which they impute to the fact that the critical Rayleigh number (1707) has 
been exceeded in the locally horizontal layer which forms in the upper zone of 
the annular space. This point of view will be confirmed later on. 

To sum up, the experimental studies performed by the different authors 
clearly demonstrate the appearance of secondary effects superimposed on the 
steady two-dimensional flow at relatively high values of the Grashof number. 
But these results are still fragmentary and do not enable us to define the criteria 
for the onset of these effects and the shape of the thermoconvective cells. More- 
over, the theoretical models and numerical calculations are not quite consistent. 

However, these different investigations carried out in a fluid layer enable us 
to make qualitative comparisons and will confirm, once more, the similarity of 
these phenomena to those in porous media. 

Chronologically, the study of natural convection in a porous medium bounded 
by two indefinite concentric cylinders has been developed as follows. Visualiza- 
tion experiments using the Christiansen effect carried out in a cell of small 
thickness (2  em) have revealed three-dimensional effects superimposed on the 
main two-dimensional motion in the upper part of the annular space. The use 
of an experimental cell of great longitudinal extent (length of the cylin- 
ders = 80 em, outside diameter = 16 em) made it possible to obtain these 
secondary effects: as the temperature field became three-dimensional, fluctua- 
tions were found to occur in the upper part of the cell, whereas the lower 
zone remained two-dimensional. In  order to demonstrate these instabilities 
a numerical model has been constructed. It is composed of a two-dimensional 
network and the equations for the energy and the momentum transformed into 
difference form. Even at very large Rayleigh numbers no instabilities are to be 
found by calculation: the temperature field and streamlines are steady and 
symmetric about a vertical axis passing through the centre of the cylinders. A 
study of stability using the Galerkin method shows that the secondary fluctuating 
effect can not be obtained if the third dimension is not considered. The critical 
Rayleigh number Ra,* for the occurrence of fluctuating convection is found 
as a function of the radius ratio and the aspect ratio in the direction perpen- 
dicular to the cylinder cross-section. 

Some calculations carried out using a numerical three-dimensional model 
based on the finite-element method have confumed the existence of spiral 
unsteady thermoconvective flows. This chronological order has been followed in 
this paper and a physical interpretation of the results is given. 

2. Formulation of the problem 
Let us consider an annular porous layer of length L bounded by an inner 

cylinder of radius ri  and an outer cylinder of radius ro. Two characteristic 
parameters are defined: R = ro/ri, the ratio of the radii, and A = L/ri, the 

22-2 
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FIGURE 1. Representation of the model with geometrical characteristics. 

longitudinal aspect ratio of the layer. Figure 1 shows the different geometrical 
quantities and notation used below. 

The porous matrix is characterized by its porosity e and its permeability K ;  
a is the thermalexpansion coefficient of the saturating fluid, (pc), its heat capacity, 
and v its coefficient of kinematic viscosity. The porous medium formed by the 
porous matrix and the interstitial fluid is treated as a fictitious isotropic fluid 
with heat capacity (pc)* = S ( ~ C ) ~ +  (1 - e) (pc), (where (pc), is the heat capacity of 
the solid) and thermal conductivity A*. The physical properties of the medium 
are regarded as constant, in particular with respect to temperature dependence. 
The variations in density with temperature are neglected, except with regard 
to their influence on the buoyancy force (Boussinesq's approximation). 

The inner and outer cylinders are assumed to be isothermal and are held at the 
temperatures Ti and To, respectively, with Ti > To. The physical constants are 
evaluated at the average temperature T, = *(Ti + To). The equations for mass 
conservation, energy and momentum governing phenomena in a porous medium 
may be written as follows for an incompressible fluid: 

v.v = 0, (1) 

(2) 

(3) 

(pc)"atT - A" V2T + (pc)fV. VT = 0, 

a-lp a,v + vp - pg + pllK-1v = 0, 

V = ~ e e , + ~ e , + ~ e 3  

is the filtration velocity, p = p o [ l  - a(T - To)] is the equation of state andp is the 
pressure; el, e2 and e3 are unit vectors. 

where g = - g cos $el + g sin 4e, is the gravitational acceleration, 
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The cylindrical co-ordinates are referred to the radius r i ,  the time to the 
quantity (pc)*rf/h*, the temperature to AT, the velocity to h*/r,(pc)f and the 
pressure to A*,u/K(pc), . This yields for the reduced quantities 

atT-V2TiV.VT = 0, (4) 

( 5 )  e-lPr*-lM-lFatV + V p  + Ra*kT - Ra*Gak + V = 0, 

with k = - cos #el + sin #e2. Five dimensionless numbers appear in (4) and ( 5 )  
together with the porosity E .  These are the Rayleigh number Ra*, the Prandtl 
number Pr" and three characteristic numbers of the porous medium and of the 
experimental conditions, F ,  M and Ga, respectively: 

Ra* = g a ( p c ) f A T K r  i/h*v, Pr* = v(pc) f /h* ,  

P = K/r:, M = (pc) f / (pc)* ,  Ga = l/aAT. 

The number F ,  which represents the fineness of the porous medium compared 
with a characteristic dimension, takes very small values when the porous 
medium is of small granulometry (of about On the other hand, 
previous numerical calculations (Caltagirone 1975a) have shown the negligible 
influence of this number when lower than With the approximation F = 0 
the momentum equation ( 5 )  reduces to Darcy's law. Finally, we have 

to 

atT-V'TiV.VT = 0, (6) 

V ~ + R U * ~ T - R U * G U ~ + V  = 0. (7)  

From the energy equation (6) and Darcy's equation ( 7 )  a numerical model of the 
problem can be developed successively for a two- and three-dimensional space. 

3. Experiments 
The early experimental results on the problem of the annular layer bounded 

by two concentric horizontal cylinders were obtained by a method of visualiza- 
tion of the thermal field using the Christiansen effect (Cloupeau & Klarsfeld 
1973; Caltagirone 1971). The optical method used is based on the fact that the 
porous medium formed by a granulous, transparent, homogeneous, isotropic 
solid, such as glass powder, and a colourless liquid with a refraction coefficient 
near that of the solid is optically homogeneous only for the wavelength A,. Owing 
to the differences between the dispersion curves nf = f(h,) and n, = g(A,) of the 
liquid and solid, respectively, the central wavelength A, is a function of the 
temperature. The mixture having been previously calibrated (A, = h(T)),  the 
experimental cell is illuminated by an arc lamp producing a set of spectrum lines. 
The lines with different colours represent the isotherms. 

The longitudinal aspect ratio of the cell A is 0-5 ,  and the ratio of the radii R 
is 2. When the Rayleigh number exceeds a certain value estimated to be about 
70, the thermal field, which was previously two-dimensional, becomes three- 
dimensional. The secondary effects are located in the upper part of the cell. As 
the cell for visualization does not yield precise information on the heat transfer 
between the cylinders, an experimental cell has been constructed ( L  = 80cm, 
r i  = 4 cm, ro = 8 em; i.e. A = 20 and R = 2). The experimental cell is formed of 
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an inner cylinder heated by six resista,nces fed by a stabilized d.c. generator 
(40V, 100A) and of an outer cylinder cooled by water flowing a t  high speed in 
an outer jacket. Two Makrolon supports 8 em thick reduce the heat losses a t  the 
ends of the cell. 

The temperature measurements are achieved by means of 16 thermocouples 
placed in alumina cans 2 mm in diameter and I m in length allowing them to be 
introduced and positioned in the porous layer. 

The value of the apparent thermal conductivity of the porous medium is 
measured for a small temperature difference maintained between the cylinders. 
In  this case, the Rayleigh number is small (Ra* < 8 a t  R = 2) and heat exchanges 
occur by conduction; this is why A* is calculated for a permanent regime. The 
other physical constants are taken from the literature. 

A data acquisition system collects the different parameters, such as the supply 
voltage, the current, the electromotive forces of the thermocouples, etc. and 
transcribes them either on a printer or to a band perforator. The data are 
processed on a computer and for each experiment the Rayleigh and Nusselt 
numbers are calculated and the heat losses estimated. The different correlations 
are also printed. The experimental results given here are by no means exhaustive, 
because the experiments carried out are still only partial and limited to one ratio 
of the radii (R = 2) and to one type of porous medium (glass balls and water). 

Three regimes of convection are observed, each of them corresponding to a 
part of the curve Nu* = f(Ra*) of figure 2. 

(i) Arange where the Rayleigh number is lower than 8 and where the convective 
phenomena are very little developed, the heat transfer occurring only by con- 
duction (Nu* = 1) .  The temperature field is two-dimensional and steady. This 
regime will be called pseudo-conduction. 
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I I 

35 40 45 

(em) 

FIG~JRE 3. Temperature variation along a generatrix 
( r  = 1.5; q5 = 0) with Ra* = 157, R = 2. 

(ii) In  the interval where the Rayleigh number is between 8 and 65 the con- 
vective phenomena are found to be steady and two-dimensional over the length 
of the cylinder. The flow of the interstitial fluid for this regime of regular two- 
dimensional convection follows two thermoconvective vortices which are sym- 
metrical about a vertical plane containing the axis of both cylinders. The fluid 
warms up on contact with the inner cylinder to fall along the outer surface. Heat 
exchanges are most important on the generatrices q5 = 0, r = ro and q5 = n 
r = r i .  The Nusselt number is about 1.5 when Ra* = 65. 

(iii) At Rayleigh numbers above 65 a new type of evolution appears: fluctuating 
three-dimensional convection. Perturbations occur in the upper part of the annular 
layer, and are shown by fluctuations in temperature. The unstable zone is limited 
by two radia,l planes, the inclination of which relative to the vertical depends on 
the Rayleigh number but in no case exceeds the value q5 = f 120". The flow 
remains strictly two-dimensional and steady in the lower part of the cell. A 
critical Rayleigh number for the transition from steady two-dimensional convection 
to fluctuating three-dimensional convection is thus defined. The value chosen is 
65 2 4. It is calculated, on the one hand, by means of thermocouples placed in 
the field and, on the other, from the diagram of Xu* us. Ra* in figure 2: the 
change in the regime is indeed expressed by a change in the slope due to the 
increase in heat transfer produced by the instabilities. Figure 3 shows the 
temperature along the generatrix q5 = 0, r = 1.5 in the middle zone of the model 
at  the Rayleigh number 157 and a t  the corresponding Nusselt number 2.795. 
These phenomena are nearly always three-dimensional since the two boundaries 
represent the temperature of the inner and outer cylinders (Ti and To). It will be 
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noticed that the period P measured on this figure is about 7-5 cm whilst the layer 
thickness (6 = r o - r i )  is 4cm. Hence the ratio PI26 N 0-94. This point will be 
discussed later together with the study of stability. 

The range of investigation extends from 1 to 670 for the Rayleigh number 
and the experiments were carried out with glass balls 3 and 4 mm in diameter. 

The experimental study has not yet enabled us to evaluate exactly the tem- 
perature field and the streamlines corresponding to the fluctuating regime since 
the flow seemed to us to be particularly complex. However, a new convective 
regime, unexpected in an annular porous layer, could be identified and a critical 
value of the transition Rayleigh number measured. 

4. The perturbation method 
An analytical solution of the equations defining the steady two-dimensional 

regime can give quantitat,ive information about the velocities and the tempera- 
ture field, as well as the local and total heat transfer. At the same time it makes 
possible a comparison with the experiment for the steady range a t  least. 

In  the system of equations (6) and (7) of § 2, let us take the curl of the two 
terms of Darcy's equation (7) and introduce the stream function $. After some 
elementary transformations we obtain 

V2T-V.VT = 0, (8) 

V2@- Ra*k = 0, (9) 

with V = Xel+l$e2, k = sinq5T1+r-lcosq5T2 

and v, = r-l@,2, v, = -$,I 

(the indices 1 and 2 refer respectively to the vector radius and the normal to it). 
The boundary conditions may be written as 

(10) 1 
$ =  0 for r = 1,R, all q5, 
@ = 0 for q5 = O,n, all r,  
T =  1 for r = 1,  all q5, 
T =  0 for r = R, all q5, 

T 2  = 0 for = 0 , ~ .  

We assume the flow to be symmetrical about the vertical axis and thus consider 
the range 0 6 q5 < n. The perturbation method consists of developing T and @ 
in power series in the Rayleigh number Ra": 

$ = 5 Ra*m$(m)(r, q5). 
m= 1 

By introducing the expressions (1  1) and (12) for T and $into the coupled equations 
(8) and (9) and by identification of the coefficients of each power of Ru* we obtain 
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an infinite set of equations which can be solved analytically: 
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with the boundary conditions: 

T(O)=1 for r = l ;  $ ( m ) = O  for r = l , R ,  all m, 
T(O) = 0 for r = R; $(m) = 0 for 4 = O,n, all m, 
T(Pn) = 0 for r = 1,R, m 2 1, 
T!?) = 0 for 4 = O,n, all m. 

The first equation to be solved is V2T(O) = 0. The solution satisfying the boundary 
conditions is 

T@) = I -Clnr  with C = (lnR)-l. 

Substitution of (16) into (14) with m = 1 gives 

V2$(1) = - C sin 4r-1, 

$(I) = (b,r + b,r In r + b3r-l) sin 4. 

(17) 

(18) 

the solution of which (found by separation of variables) is 

The coefficients are determined by means of the boundary conditions (15). 
The same process of calculation is continued and gives successively 

T(l) = (a, r ln2r + a,r lnr + a3 r-lln r + a,r-l+ a5r)  cos q5, 

$(2) = (b4r21n2r+b,r21nr+b,Inr +b,r2 +b, +b9r-2)sin2$, 

(19) 

(20) 

T(,) = (a6 r2 ln3 r +a, In% + a, r21n2r + a, ln2r + a,, r21n r 
+a,, In r + a,, r-, In r + a13 r2 + a14 + a15 r-,) 
+ (a,,r21n3r+a,,r21n2r+a,,ln2r+a,9r21nr+a,,lnr 
+a2, r-2 In r + a,, r2 + + a,, r-,) cos 24, (21) 

9V3) = (b,, r31n3r + b,, r ln3r + b,, r31n2r + b13 r ln2r 
+ b,, r-l ln2 r + b,, r31n r + b,, r In r + b,, r-lln r 
+ b,, r3 + b,,r + b2,r-1) sin 4 + (b,, r3 ln3 r 
+ b,, r3 ln2 r + b,, r ln2 r + b,, r31n r + b,, r In r 
+ b,, r-l In r + b,, r3 + b,, r + 6 ,  r-l+ b,, r3) sin 34. (22) 

The coefficients ui and b i  depend only on the ratio of the radii R; the detailed 
expressions are not given here. 

The temperature and stream function a t  any point may be approximated by 
the first three terms of the expansions (I  1) and (12): 

T = T(O) + Ra* T(1) + Ra*2 T('-'), 

$ = Ra* $(I) + Ra*2 $(2) + Ra*3 $(3). 

(23) 

(24) 

The perturbation method only holds for sufficiently small values of the 
Rayleigh number; for the ratio of radii 2,  it is shown by experiment that the 
Rayleigh number must be lower than 75 for coherent results to be obtained. 
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FIGURE 4. Streamlines and temperature field obtained by the 
perturbation method at Ra* = 25 and R = 2. 

I I 1 I I 

30 60 90 120 150 180 

4 (deg) 

FIGURE 5. Variation of the inside and outside Nusselt numbers 
Nu: and Nu,* with 4 (Ra* = 25, R = 2). 
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Figure 4 gives an example of the temperature field and streamlines obtained 
by the perturbation method at the Rayleigh number 25 and at R = 2 .  It is to 
be noted that at the centre of the vortex, where $ is a maximum, 31., moves 
towards the upper part of the annular layer (q5c < 90"). 

The local heat transfer a t  the inner and outer surfaces, as well as the total 
heat transfer, are given by the following expressions for the Nusselt number: 

N u t  = - In R[rT1Ir=,, Nu,* = - In R[rTl]r=R,  (25) 

Using (23), the total Nusselt number is given by 

Nu* = 1 - Ra*, In R[a,, +a,, +a,, +2a,, - 2a,,]. (37) 

The local Nusselt numbers are functions of q5. The variation in the local Nusselt 
numbers is shown in figure 5. Heat exchange seems to occur principally in 
preferential zones. 

5. Numerical two-dimensional solution 

regime we again consider the system (6) and (7),  or equivalently, 
In  order to solve the problem corresponding to the unsteady two-dimensional 

8,T = V'T-V .VT,  ( 2 8 )  

(29) V2$ - Ra* k = 0. 

It is of interest that the system contains now only one characteristic number 
Ra*. The numerical model consists of this system of equations, suitably dis- 
cretized, and of a network superimposed on the physical range to be studied. 
The use of polar co-ordinates transforms the resolution range into a rectangle of 
width R-  I and height 2n. No symmetry about the vertical axis is assumed u 
priori, and the cylindrical annulus is considered as a whole. In  this case the 
boundary conditions may be written as 

I $ =  0 for r =  l ,R,  all q5, 
T = 1 for r = I ,  all q5, 
T = 0 for r = R, all q5. 

An initial temperature distribution of the form 

To = 1 -  lnr/lnR--asin(nInr/lnR)cos(sq5) 

(a being an amplification coefficient and s a wavenumber) is introduced into the 
calculation. The number s, in particular, enables us to assign to temperatures 
asymmetric values with respect to the vertical axis. The stream function is 
assumed zero initially over the whole range. 

The method of alternate directions is used to solve the two coupled equations 
(28) and (29) on a rectangular network with 49 x 49 nodes representing the geo- 
metrical discretization of the model. A calculation for a given Rayleigh number 
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0.3 1 3 10 30 ' 100 2 
Ra* 

FIGURE 6. Nu*, Re* correlation for five values of the ratio 
of the radii: R = 2f, 24, 2, 4, 16. 

Ra* and ratio R is developed as follows. A coherent temperature field is introduced 
into the calculation. The second term of (29) relative to the stream function is 
estimated and a convergent iterative process, based on the algorithm of the 
method of alternate directions, gives the value of the stream function at each 
node of the network. The velocities are then deduced from the stream function. 

The parabolic equation (28) is solved by the same method but the second term 
in this energy equation includes partial derivatives of the temperature and it is 
advisable to make iterations within the same time step to determine correctly 
the temperature field. A cycle corresponding to a new time step is then started. 
Calculation is continued until the solution is convergent over the whole range. 
Tests based on the temperature field and a t  the same time on the global Nusselt 
number Nu* then stop the calculation. At every time step the local Nusselt 
numbers Nu: and Nu,*, as well as the total Nusselt number NU*, are printed. 
The time for calculation with the network of 49 x 49 nodes is 2 s per time step 
using an IBM 370-168 computer. The number of time steps is of the order of 50. 
The range of investigation extends from Ra* = 0.2 to Ra* = 5000 for five values 
of the ratio of the radii: R = 2&, 2*, 2 , 4  and 16. 

The results obtained with a numerical two-dimensional model can be plotted 
on a graph representing the variation of the Nusselt number Nu* as a function 
of the Rayleigh number Ra* for various values of the ratio R (figure 6) .  The 
maximal and minimal numerical values of the local Nusselt numbers calculated 
at the inner and outer surfaces, together with the maximal stream function, are 
given in table 1 for various values of Ra* and R. Whatever the Rayleigh number 
and the ratio of the radii may be, the solution ultimately exhibits symmetry 
about the vertical axis, even when the initial conditions are asymmetrical. The 
unique character of the solution is verified by repeating the same calculation 
under different initial conditions. 
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R Ra* 

200 
500 

1000 
2000 
5000 

50 
100 
200 
500 

1000 

2 10 
25 
50 

100 
200 
500 

4 2 
5 

10 
25 
50 

100 

16 0.2 
0.5 

1 
2 
5 

10 

Ld 100 

24 25 

NU* 

1.0045 
1.0176 
1.1017 
1.3281 
1.8193 
2.9283 

1.0052 
1.0204 
1.0776 
1.2627 
1.9028 
2.7293 

1.0172 
1.0993 
1.3278 
1.8286 
2.6256 
4.1983 

1.0164 
1.0895 
1.3038 
2.0099 
2.9073 
4.1818 

1.0072 
1.026G 
1.0927 
1.2965 
1.9528 
2.8138 

Nu: 
e-7 

min 

0.8708 
0.7532 
0.4758 
0.2126 
0.0607 
0.0062 

0.8616 
0.7349 
0.5215 
0.2464 
0.0410 
0.0197 

0.7587 
0.4747 
0.2093 
0.0832 
0.0625 
0.0593 

0.7874 
0.5558 
0.3257 
0.1930 
0.1785 
0.1802 

0.9048 
0.8110 
0.6881 
0.5620 
0.4814 
0.4643 

max 

1.1395 
1.2863 
1.7602 
2.5518 
3.8942 
6.6903 

1.1482 
1.3038 
1.6280 
2.278'7 
3.9241 
5.8701 

1.2661 
1.6780 
2.3530 
3.5085 
5.2312 
8.7182 

1.2377 
1.5840 
2.1834 
3.6754 
5.4921 
8.2689 

1.0796 
1.2621 
1.4996 
2.0156 
3.5299 
5.6878 

Nu,* 
& 
min 

0.8713 
0.7577 
0.4994 
0.2644 
0.1028 
0.0192 

0.8626 
0.7438 
0.5559 
0.3250 
0.0997 
0.0342 

0.7651 
0.5267 
0.3031 
0.1340 
0.0545 
0.0243 

0.7714 
0.5721 
0.3526 
0.1389 
0.0725 
0.0418 

0.8532 
0,7622 
0.591 1 
0.3842 
0.1801 
0.0992 

max $ma= 

1.1435 2.3539 
1.3005 4.6932 
1.8351 11.5012 
2.8362 21.7615 
4.5263 38.4017 
8.2966 71.6298 

1.1568 1.2743 
1.3326 2.5387 
1.7354 5.0047 
2.6829 9.6080 
5.3525 20.4889 
8.2684 32.9472 

1.3071 1.1769 
1.8917 2.8921 
3.0955 5.4934 
5.2743 9.7480 
8.3049 15.8598 

14.2085 27.0995 

1.2937 0.6075 
1.7780 1.4966 
3.8852 2.8428 
6.0025 5.9068 
9.5514 9.3737 

14.4234 13.9676 

1.1658 0.1983 
1.3203 0.4920 
1.7216 0.9639 
2.6890 1.7937 
5.5917 3.5882 
9.4033 5.5798 

TABLE 1. Values of Nu*, max Nu:, min Nu:, max Nu:, rnin Nu,* and calculated as 
a function of Ra* and R using the numerical two-dimensional model 

Two types of evolution are revealed by the numerical analysis and a physical 
interpretation can be found for each of them. When the Rayleigh number based 
on the radius of the inside and outside cylinders is less than a certain value 
(dependent on R), convection is weak. The isotherms for this regime of pseudo- 
conduction are practically concentric circles. The total Nusselt number is very 
close to 1. 

A second type of evolution, corresponding to the development of convective 
effects, is to be found as Ra* increases. In  the lower and upper zones of the annular 
layer the isotherms exhibit deformations which are the greater the more Ru* 
is increased. It is also in these regions that the calculated radial velocities are the 
highest. The curves of Nu* us. Ra* in figure 6, plotted in logarithmic co-ordinates, 
show two zones, characterized by their slopes: the lower part of the curve shows 
a growing slope, whereas the slope is maximum and constant when the Nusselt 
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FIGURE 7. Streamlines and temperature field corresponding to Ra* = 200 and R = 2. 

FIGURE 8. Variation of the inside and outside Nusselt numbers 
Nu: and Nu,* with $ (Ra* = 200, R = 2). 
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number is above about 1-5. The empirical relation Nu* + A  Ra*0'54, where A is 
a function of R, can describe the evolution in this range. Figure 7 gives an 
example of the temperature field and streamlines obtained for a Rayleigh number 
corresponding to this regime of developedregular convection (Ra* = 200, R = 2) .  
The local heat transfer a t  the inner and outer surfaces, characterized by the two 
Nusselt numbers Nu: and Nu:, is represented as a function of the angle $ for 
the same Rayleigh number (figure 8). Heat exchanges occur principally in the 
regions with high temperature gradients, say a t  r = 1, $ = 180" and at r = €2, 

The solution of (28) and (29) found using the numerical two-dimensional model 
is always convergent, whatever the values of Ra* and R. Expressed in physical 
terms, this means that natural convection between two cylinders is steady if the 
porous layer is assumed to be thick. This will be confirmed by the study of 
stability by Galerkin's technique, to be discussed in 3 6. 

(b = 0". 

6. Stability 
As the numerical two-dimensional model described in the preceding section 

does not allow us to reproduce the fluctuating phenomena observed experi- 
mentally, a study of stability based on Galerkin's method has been carried out. 
The results of the numerical model are used to define the initial state on which 
temperature and velocity perturbations are superposed. This stability study has 
two aims: first, to determine the critical conditions for the onset of these fluctu- 
ating three-dimensional phenomena, and hence a transition critical Rayleigh 
number Raz as a function of the ratio of the radii and, second, to get some 
quantitative information about the influence of the layer length, characterized 
by the longitudinal aspect ratio A = L/r i ,  and about the onset of the fluctuations. 

Let us again consider the system ( l ) ,  (4) and (5) in the form 

Q.V = 0, (31) 

C?~T-V~T+V.VT  = 0, (32) 

(33) e-1 Pr*-lICf-lFatV + V p  + Ra* kT - Ra* Ga k + V = 0, 

with k = - cos 4 e, + sin $ez. Consider small perturbations in temperature, 
velocity, pressure and density: 

6 = T-To, v = V-Vo,  w =p-po, -aAT8 = (p-po)/pl. (34)-(37) 

The initial two-dimensional state is characterized by the index zero: 

To = f ( r ,  4); V ,  = h(r, 9); v = ue, + wez + weg. (38) 

The same simplifying hypotheses as in $ 2  are used, in particular the Boussinesq 
approximation. Let us introduce these perturbations into the system (31)-( 33). 
Then, on taking twice the curl of both terms in (33) and considering 

R a * T o V x k + V x v o =  0, 

&-1Pr*-1M-1Pa,V2v = Ra* 1 - V ~ V ,  
we obtain 
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where the three components of the vector 1 are given by 

I ,  = - cos q5 8, 13 + r--1 sin q5 0, 23. 

Let us multiply the first component of (40) by cos q5 and the second by - sin q5 
and add: 

c1Pr*-1M-1Fat(V2ucosq5-V2vsinq5) 
cos2q5 cos2q5 

sin2$8,,,+- o,l + r2 e, 22 + 0, 33) - ( v ~ U  cos q5 - ~2vs in  $1. 
(42) 

r 

If the second-order terms in the energy equation (32) are neglected and we 
consider 

equation (32) then becomes 
V2T, - V,. VT,  = 0, (43) 

a,@ = V20 - (uT,, +vr-lT,, 2). (44) 

Equations (42) and (44) form a system whose solution is not a priori evident. 
We make the simplification q5 = 0, based on physical considerations. The zone 
in which perturbations first begin to develop lies, in fact, in t8he upper part of the 
annular layer. Further, it  is for q5 = 0 that the vertical temperature gradients are 
the greatest. The validity of this hypothesis will be confirmed later. 

The system (42)-(44) then reduces to 

ate = v2e - UT,, 1, (45) 

(46) s-1Pr*-1M-1FatV2U = Ra*(r-lB,, + e,33j - vzu, 

with q,2 = 0 a t  q5 = 0. 
As the porous layer is bounded by two indefinite horizontal and coaxial 

cylinders, we shall develop the arbitrary perturbation as a function of a one- 
dimensional periodic wave. The periodic temperature distribution in figure 3 
corresponding to a strongly perturbed state supports this hypothesis. Let 

8 = 0(r )  exp (isz), u = u ( r )  exp (isz),  (47)) (48) 

where s = ,mnri/.M is the wavenumber and nE is the number of cells developed 
over the length M .  8 and u satisfy the boundary conditions 8 = u = 0 for r = 1 
and r = R. The equations then become 

ate = (02 +r-lD - q e  - T,,~ U ,  (49) 

e-1Pr*-1JI-1Fat(D2 + r--1D - s2)u = Ra*(r-lD - s2)0 - (D2+  r-1D - s2)u, (50) 

with 1) = d/dr and the dimensionless numbers defined above. 
The Galerkin method (Kantorovich & Krylov 1958; Finlayson 1972) applied 

here to solve this system consists of representing the perturbations 0 and u by a 
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set of linearly independent functions satisfying the boundary conditions in the 
form 

N 

Let us introduce these expressions for 0 and u into the system (49) and (50),  

multiply the two equations by Oj and q., respectively, and integrate over the 
layer thickness. We then have 

Aijdai/dt = Bija i  + Cijbi, (53) 

Diidb,/dt = Ra*Eijai+ Fijbi, (54) 

where A i j ,  Bi j ,  Dii, E ,  and F(j are constants and C, is a term which depends on 
the initial temperature distribution in the layer. In  the present case, To@, 4) is 
defined by the numerical two-dimensional model developed in (i 5. Standard 
manipulations give, for example, 

C . .  I1 = - l lRUiOjTo,ldr.  

The differential system of 2N equations with constant coefficients can be reduced 
to the form 

dC/dt = A-lBC = LC, ( 5 5 )  

where A, B and L are square matrices and C the column matrix of the coefficients. 
The solution of the differential system (55) may be written as 

C, = cjexp (h,t) ( j  = 1, 2 , .  .., 2N) .  (56) 

The necessary and sufficient condition for the system to be asymptotically stable 
is that the eigenvalues of the matrix L have a real negative part (the imaginary 
part being null at the marginal state; Glansdorff & Prigogine 1971). The 
characteristic equation takes the form (with I the identity matrix) 

det(L-hl)  = 0. (57) 

The limiting state between stable two-dimensional and unstable three-dimen- 
sional states may be defined by theRouth-Hurwitz criterion, which for dissipative 
systems such as the one studied here amounts to cancelling the determinant of 
the matrix B (Finlayson 1972) contained in (55): 

It is to be noticed that in our case the search for the marginal state and, in 
particular, the determination of the stability criterion are carried out from an 
initial state in which the convective phenomena are already highly developed. 
To use the method described above it is necessary to know the temperature field. 
We could obtain it by direct measurements on an experimental outfit, but in our 

23 P L M  76 
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300 

N = l  N = 2  N = 3  
-7 7-7 M 

za 40.698 3.1713 40.202 3.1633 40.202 3.1637 
24 43.145 3.1985 42.789 3.1840 42.789 3.1844 
2 65.943 3.3079 67.057 3.3122 66.962 3.3122 
4 216.92 3.7573 227.52 3.8550 228.47 3.8310 

TABLE 2. Critical transition Rayleigh number %a,* and critical wavenumber ac calculated 
for R = 2f, 24, 2, 4 and with the approximations N = 1 ,  2, 3 

R a a ;  a, Ba; 01, Ba; 01, 

- 

m=3 m=4 

B'az 
I 

- 
I 

I I I I )  

0 1 2 3 4 

M/T,(R- 1)  

FIGURE 9. The Rayleigh number B?a* as a function of the length M for R = 2. 

case the temperature distribution To is calculated using the numerical two- 
dimensional model. 

We shall now describe the way in which the critical Rayleigh number Ra,* for 
the onset of fluctuating three-dimensional phenomena has been calculated. 

A numerical calculation is performed with a Rayleigh number chosen arbi- 
trarily and the value of R a t  which the critical conditions are sought. The tem- 
perature distribution obtained after convergence of the calculation is inserted 
into the differential system (53) and (54). The different integrals A i j ,  Bi j ,  Cij, 
D,,, E i j  and Pij are calculated numerically and the minimum critical Rayleigh 
number Raz is determined as a function of the wavenumber s. The value of the 
critical wavenumber corresponding to a minimal Raz is thus found. A numerical 
calculation is started with this new value of Ra,* and so on, until the process 
becomes convergent. The critical conditions defined are characterized by the 
value of the minimal critical Rayleigh number RaF and by the wavenumber 
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FIGURE 10. The critical transition Rayleigh number 9 a :  as a function of R -  1. 

3.8 

3.6 - 
d 
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3.2 - 

I I I 1 

0.189 0.414 1 3 0.189 0.414 1 3 

R-1 

FIGURE 1 I. The wavenumber 01, as a function of R - 1. 

23-2 
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corresponding to s, = mnri/M. The values of the critical Rayleigh numbers 
Ha: = Ra,*(R- 1) and the wavenumbers a, = s,(R- 1) based on the thickness 
ro - ri of the layer are reported in table 2 for four values of the ratio of the radii 
R and a set of trial functions satisfying the boundary conditions: 

Oi = Ui = [(lnR- lnr)1nrli. 

Figure 9 illustrates the variation of the Rayleigh number Wa* as a function of 
M/r,(R- 1) at  R = 2 for a number of cells chosen such that @a* is a minimum. 
Range I corresponds to a steady two-dimensional regime, range I1 to the 
fluctuating three-dimensional regime. If the length of the annular layer M 
(a = mn(r, - r , ) /M)  is taken equal to zero, which corresponds to the numerical 
two-dimensional model, the transition critical Rayleigh number is then infinite. 

The variation of Waz and a, as functions of R - 1 are shown in figures 10 and 
11. When the ratio R tends to 1 the curve W&R) tends to the limit correspond- 
ing to the onset of natural convection in a horizontal porous layer, i.e. to 4n2. 
The wavenumber tends to T. 

The critical Rayleigh number 9 a :  and the wavenumber a, given in table 2 
are found to increase for larger values of R. The value obtained a t  R = 2 may be 
compared with the critical Rayleigh number and the critical wavenumber found 
experimentally: Wa: = 65 4 and a, = 3.27. 

7. Numerical three-dimensional solution 

three-dimensional model in order to approach the fluctuating phenomena. 

energy equation becomes 
(59)  

Taking the curl of the two terms in (7) makes the pressure term disappear. 
As the medium is supposed to be incompressible (V . V = 0)  the field is solenoidal 

and thus we can set V = V x +, where I) is a vector potential which can always 
be assumed to be solenoidal also (V.  + = 0 )  (Hirasaki & Hellums 1968; Holst & 

Prom the results of the stability study we are led to construct a numerical 

We again consider the system (6) and (7), in rectangular co-ordinates. The 

atT = V2T - V. V T .  

Aziz 1971). Thus v2+ = k = Ra*(T,,e,-T,e,) .  (60) 

With the assumption $, = 0 a t  r = 1 and r = Band with V .  I) = 0,  the boundary 
conditions are 

] (61) 
= 0, $2 = e3 = 0 for x = O,A, all r ,  

$, = 0, $g,n++Z= 0, $3,n+@3 = 0 for r =  1,R, all x, 

where A = L/r ,  is the longitudinal aspect ratio of the cell and $i ,n the derivative 
normal to the surface of the component $,. 

The choice of rectangular co-ordinates proceeds from the method of finite 
elements used here. This method offers, among other things, flexibility as to 
choice of geometrical model: the modification relative to a shift in configuration 
amounts to giving the new co-ordinates of the network nodes and, eventually, 
new boundary conditions. 
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So we try to solve the system consisting of one equation of parabolic type (59) 
and three Poisson equations (60). In  fact, with the boundary conditions stated, 
the solution of the third equation V2$, = k, = 0 is identically zero. 

From a physical viewpoint the finite-element method consists of dividing the 
range of investigation V into geometrically simple subdomains V,. These 
elements are then juxtaposed to give the total domain and the approximate 
solution (Wilson & Nickel1 1966). 

In  order to get a strict mathematical formulation of the finite-element method, 
several approaches are possible; one of them is approximation by minimization 
of the functional corresponding to the problem, but this method is not available 
for the situation where the functional does not exist or has not been found, or 
cannot be minimized (Finlayson & Scriven 1967). For our study we have chosen 
the direct process of Galerkin (Finlayson 1972; Zienkiewicz 1971). 

Let us consider the equations governing the variation of the function u in the 
volume V and its evolution in time: 

A(u) = 0 inV ( t  > O ) ,  (62) 

with the boundary conditions and initial conditions 

C(u) = 0 on S (t > 0) ,  
D(u) = 0 in V (t  < 0) ,  

A ,  C and f) being operators. 
A solution of (62) is given as a trial function satisfying the boundary conditions 

u, = N&}, (64) 

where N is a shape function representative of interpolation and depending on 
space and time co-ordinates, and {u} is a set of n parameters. The trial function 
(64) is introduced in (62) and the weighted residuals become 

S ~ K R ~ Z V  = o (k = 0, I ,  2 ,..., n),  (65) 

where the residual R = A(u,) must be zero when the trial function is the exact 
solution of the probIem governed by A(u); W' is the weight function. 

In  the Galerkin process, the weight function is the shape funct'ion N which 
defines the approximation 

/ v N i A ( N { u j )  dV = 0. (66) 

If the operator corresponds to the energy equation, then 

V .  (kVu) + Q = a,u. (67) 

If k,, k, and k3 are the non-vanishing components of thermal-conductivity tensor 
k, which is supposed diagonal and independent of temperature, the integral (66) 
applied to the volume V becomes 

SyNi{ - [(kiu,J,i + (hu ,~ ) , ,  + (ksU,3),31- Q + atu} dV = 0 (68) 
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FIGURE 12. Details of three-dimensional network. 

when the boundary conditions C(u) on X are of Dirichlet type. For a linear 
interpolation of the function u in time over t,he range [ to ,  tl] = At, the function 
u, is written as 

u, = [No, 41 with N ,  = (At - t ) /At ,  Nl = t /At;  (69) 

{ u } ~  and { u } ~  are the column matrices of nodal values at to and t,, ( u } ~  being known 
a t  the instant to. 

The u derivative is 

Let us substitute expressions (69) and (70) for u and ii,u in (68) and integrate 
from 0 to At(to = 0); finally we obtain a linear system in matrix form: 

G{u), = s, (71) 

with G = $H + (At)- lC,  S = P - (&H-  (A t ) - lC)  { u } ~ ,  

where 

These integrals are evaluated numerically when the elementary domains are 
curved. 

The linear system (71) is then solved using an iterative or direct method, 
depending on the type of element considered. The numerical model consists of 
several parts, allowing successively the network to be generated, the elementary 
matrices to be calculated and assembled, and the system to be solved by the 
Cholevsky method by bands. 

The physical range is represented by an assembly of curved isoparametric 
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FIGURE 13. Streamlines corresponding to the fluctuating three-dimensional regime. 

elements with 20 nodes. This network is made up of 54 elements and 336 nodes. 
Figure 12 shows the element arrangement in the annular layer. 

In  view of the problem considered (transitory three-dimensional) the com- 
puter program is too long. Therefore calculations for only three Rayleigh numbers 
(50, 100 and 200) have been carried out for the ratio of the radii 2. 

An initial temperature distribution is inserted into the calculation, i.e. 

To = 1 - lnr/ lnR fa, sin (7rlnr/lnR) sin (sl 4), 
with = 4 +a,n COB ( S ~ ~ T T T Z ) ,  where a1 and a2 are amplification coefficients and 
s1 and s2 wavenumbers characteristic of the initial perturbation. 

Two different types of evolution are obtained, depending on the value of the 
Rayleigh number. At the Rayleigh number 50 the initial three-dimensional 
perturbation is found to disappear gradually during evolution to give place to 
strictly two-dimensional temperature and velocity fields. Further, the calcula- 
tion is found to converge to a stable solution corresponding to that of the two- 
dimensional model. In  particular, the Nusselt numbers are equal to within the 
errors of calculation. At the Rayleigh numbers 100 and 200 the evolution is 
different: the initial perturbation grows in the course of time and the three- 
dimensional effects are more pronounced. The flow remains two-dimensional on 
the lower part of the curve, whereas it displays spiral deformations on the upper 
part. Some streamlines are shown in figure 13. Convergence to a stable solution 
could not be obtained in the intervals of time considered. 

It was not possible to proceed to a more accurate control of the value of the 
critical Rayleigh number dividing the two convective regimes because of the 
long calculation which would have been necessary to eliminate the influence of 
the arbitrary initial conditions. In  spite of the small number of calculations 
performed, this numerical study allowed us to find the two thermoconvective 
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regimes, the steady two-dimensional one and the fluctuating three-dimensional 
one, observed in experiments and expected theoretically from the study of 
stability. 

8. Physical interpretation 
The study of stability enables us to get a better understanding of the reason 

why the two-dimensional theory only mentions steady convective phenomena, 
contrary to what is observed with a horizontal layer: with N = 1, for example, 
condition (58) becomes 

BF 
CE (I2-s2IJI4 ’ 

( Il - I2 + s213)2 BF-Ra*CE = 0; hence Ra* = - = 

where 11, 12, I ,  and I4 are integrals with definite values and s = mnri/Jf, with 
m $; 0 (m = 0 corresponds to the two-dimensional regime). The number M ,  which 
represents the length of the annular layer, is zero in our case. As the Rayleigh 
number is proportional to s2 when s increases to infinity the unstable regime can 
never be obtained, as can be seen also in figure 9. 

Let us now try to analyse from a physical point of view the mechanisms 
generating the secondary three-dimensional effects. Owing to the existence of a 
gradient between the two cylinders, more or less important motions are produced 
in the fluid depending on the value of this gradient and on the other experimental 
parameters. By contrast, in a horizontal porous layer convective phenomena are 
found to occur only from a marginal state resulting from a competition between 
the stabilizing dissipative effects and, on the other hand, the destabilizing con- 
vective effects. However, both configurations are not 60 different far from 
equilibrium, as the Rayleigh number increases: the horizontal porous layer is 
then the seat of important convective phenomena which develop in the form of 
organized cells and at certain points high gradients are found to appear which are 
sufficient for the critical conditions for the onset of convection to be reached 
locally (Caltagirone 1975 b ) .  Whenever the critical conditions are exceeded a t  any 
point the perturbation develops in the form of micro-vortices. The fluctuating 
regime then results from the interaction of these micro-vortices with the main 
stream representing a thermoconvective cell. 

The same holds for the annular cylindrical layer. The critical conditions for the 
Occurrence of local perturbations in a medium where convective phenomena are 
already highly developed are met when the energy released by the forces due to 
the adverse thermal gradient compensates the energy dissipated by conduction 
and convection. The instability thus appears as a competition between the two 
mechanisms. 

The NU*, Ra* diagram in figure 14 reproduces the results obtained successively 
from the experimental study, with the perturbation method and with the nu- 
merical model for R = 2. As long as the convection regime is steady the experi- 
mental points more or less accurately lie on the theoretical curve relative to the 
two-dimensional model. When the Rayleigh number is above 65, practically all 
the experimental points are above this theoretical curve, showing the increase 
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FIGURE 14. Comparison of the results obtained from experiments (asterisks), from the 
perturbation method (squares) and from the numerical model (curves) on the Nu*, Ra* 
diagram for R = 2. 

in heat transfer due to the instabilities. The NU*, Ra* curve obtained by the 
perturbation method coincides with that obtained with the numerical model at 
low Rayleigh number and deviates from it as this number increases. 

9. Conclusions 
The results for natural convection in a porous layer bounded by two horizontal 

concentric cylinders which are reported in this paper have been obtained by a 
physical and mathematical approach to the problem. 

The experimental study has pointed out the complexity of the phenomena 
owing to the existence of different thermoconvective regimes according to the 
values of the experimental parameters. The critical Rayleigh number separating 
the regime of regular two-dimensional convection from that of fluctuating three- 
dimensional convection has thus been defined: a t  R = 2, .%'a,* = 65. In  order 
to approach the physical reality a mathematical formulation of the physical 
system has been given and the equations obtained have been solved by different 
methods. 

The study of stability in an annular layer shows the importance of the third 
dimension for the occurrence of these perturbations and gives, furthermore, the 
value of the critical transition Rayleigh number as a function of the ratio of the 
radii: a t  R = 2, Wa,* = 66.96. 

The good agreement between experimental and theoretical Rayleigh numbers 
results from several causes: the equations used are very representative as in 
many other problems and, on the other hand, Galerkin's method is very general 
and very efficient, in the search for criteria for hydrodynamic stability. 
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However, an experimental description of the phenomenon is not sufficient. 
Only an exhaustive study will enable us to classify the different convective 
regimes and to verify the theory. In  the same way, a more complete exploitation 
of the three-dimensional model can contribute to defining the temperature field 
and the streamlines for each thermoconvective regime. 

I shouId like to thank here the Depart,ment of Rocks Mechanics of the Labora- 
toire Central des Ponts et Chaussdes for kindly providing the finite-element 
computer program used here after modification for the treatment of couplcd 
transitory problems. I am very grateful to Professor J. J. Bernard, Director of 
the Laboratoire d’lldrothermique du C.N.R.S., for encouragement and helpful 
assistance. 
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